
Band gap calculations with Becke–Johnson exchange potential

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys.: Condens. Matter 19 196208

(http://iopscience.iop.org/0953-8984/19/19/196208)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 28/05/2010 at 18:43

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/19/19
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 19 (2007) 196208 (8pp) doi:10.1088/0953-8984/19/19/196208

Band gap calculations with Becke–Johnson exchange
potential

Fabien Tran, Peter Blaha and Karlheinz Schwarz

Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/165-TC,
A-1060 Vienna, Austria

Received 6 March 2007
Published 19 April 2007
Online at stacks.iop.org/JPhysCM/19/196208

Abstract
Recently, a simple analytical form for the exchange potential was proposed
by Becke and Johnson. This potential, which depends on the kinetic-energy
density, was shown to reproduce very well the shape of the exact exchange
potential (obtained with the optimized effective potential method) for atoms.
Calculations on solids show that the Becke–Johnson potential leads to a better
description of band gaps of semiconductors and insulators with respect to
the standard local density and Perdew–Burke–Ernzerhof approximations for
the exchange–correlation potential. Comparison is also made with the values
obtained with the Engel–Vosko exchange potential which was also developed
using the exact exchange potential.

(Some figures in this article are in colour only in the electronic version)

1. Introduction and theory

The density functionals of the local density (LDA) and generalized gradient (GGA)
approximations are the standard choice for the exchange–correlation energy Exc = Ex + Ec to
perform calculations on periodic solids with the Kohn–Sham [1] method of density functional
theory [2], whose equations are

(− 1
2∇2 + vKS

eff,σ (r)
)
ψi,σ (r) = εi,σ ψi,σ (r), (1)

where vKS
eff,σ = vext + vH + vxc,σ is the Kohn–Sham multiplicative effective potential whose

components are the external, Hartree, and exchange–correlation (vxc,σ = δExc/δρσ = vx,σ +
vc,σ ) terms, respectively. In many cases the LDA and GGA functionals (for the latter mainly the
one proposed by Perdew et al (PBE) [3]) are able to provide reliable results for the geometry
(i.e., equilibrium structure) and electronic structure of solids. Nevertheless, some problems
remain with these approximations, and the most notorious is the bad description of the band
gap, which is often too small, or even absent, compared to experiment [4]. It is also well known
that rigorously the Kohn–Sham eigenvalues should not be used for excitation energies, but it
is common practice to do so. Mainly responsible for this deficiency in the band gap is the
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self-interaction error contained in the LDA and GGA exchange–correlation potentials [5]. A
better description of the band gap can be obtained with the more sophisticated LDA + U [6]
(for strongly correlated systems), hybrid (see, e.g., [7–10]), and optimized effective potential
(OEP) (also called exact exchange method, EXX, in the literature) methods [11–17]. Note
that the LDA + U and hybrid methods do not lead to a multiplicative potential (i.e., they
do not lead to true Kohn–Sham equations). Accurate band gaps can also be obtained by
performing quasiparticle energy calculations with the expensive GW method (see, e.g. [17–19]
for recent applications). We also mention the GGA functional developed by Engel and Vosko
(EV93) [20], whose parameters were determined by fitting exact exchange OEP and which
can improve the description of the band gap over the standard LDA and PBE functionals (see,
e.g., [21–23]).

If the orbital-dependent Hartree–Fock expression for the exchange energy is chosen,
the corresponding multiplicative exchange potential vx,σ (i.e., the exact exchange potential)
can be calculated by solving the OEP equations [24, 25], for which several methods and
approximations have been proposed (see, e.g., [26–28]), but the main problems with the OEP
method is that it is computationally rather demanding and not free from technical difficulties
(see, e.g., [29]). In a recent article, Becke and Johnson (BJ) [30] presented a simple and easy-
to-implement expression for vx,σ that can well reproduce the shape of atomic OEPs [31]. The
BJ potential reads

vBJ
x,σ (r) = vBR

x,σ (r)+
1

π

√
5

12

√
2tσ (r)

ρσ (r)
, (2)

where

tσ (r) = 1
2

Nσ∑

i=1

∇ψ∗
i,σ (r) · ∇ψi,σ (r) (3)

is the kinetic-energy density and

vBR
x,σ (r) = − 1

bσ (r)

(
1 − e−xσ (r) − 1

2
xσ (r)e−xσ (r)

)
(4)

was originally proposed by Becke and Roussel [32] to model the Coulomb potential created by
the exchange hole. In equation (4), xσ is determined from a nonlinear equation involving ρσ ,
∇ρσ , ∇2ρσ , and tσ [32], and then bσ is calculated with bσ = (x3

σ e−xσ /(8πρσ ))1/3. Note that

lim
|r|→∞

vBR
x,σ (r) = − 1

|r| (5)

which is the asymptotic behaviour of the exact exchange potential. We mention that the quantity
τσ used by Becke and collaborators in [30] and [32] is related to tσ (equation (3)) by τσ = 2tσ .
Note that there is no exchange-energy functional Ex whose functional derivative δEx/δρσ gives
equation (2). Therefore, for structure optimization or total energy comparisons, there is no
unique choice of functional for the evaluation of the exchange energy if the BJ potential is
used.

In this work we present the results obtained with the Becke–Johnson exchange potential
for the calculation of the band gap of semiconductors and insulators. Equation (2) was
implemented self-consistently into the WIEN2k code [33] which is based on the full-potential
(linearized) augmented plane-wave and local orbitals (FP-(L)APW + lo) method to solve the
Kohn–Sham equations for periodic systems. In the WIEN2k code, the kinetic-energy density
tσ is not calculated with equation (3) but instead with the equivalent expression

tσ (r) =
Nσ∑

i=1

εi,σ |ψi,σ (r)|2 − vKS
eff,σ (r)ρσ (r)+ 1

4∇2ρσ (r) (6)
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Table 1. Structure and experimental geometrical parameters of the solids considered in this work.
The lattice parameters are in Å and z is a fractional parameter along the c-axis.

Solid Structure Geometry

Ne fcc a = 4.47 [37]
Ar fcc a = 5.31 [37]
Kr fcc a = 5.65 [37]
Xe fcc a = 6.13 [37]
C Diamond a = 3.567 [38]
Si Diamond a = 5.430 [38]
Ge Diamond a = 5.652 [38]
LiF Rock salt a = 4.010 [38]
LiCl Rock salt a = 5.106 [38]
MgO Rock salt a = 4.207 [38]
ScN Rock salt a = 4.50 [39]
BN Zinc blende a = 3.616 [9]
MgS Zinc blende a = 5.622 [9]
SiC Zinc blende a = 4.358 [38]
ZnS Zinc blende a = 5.409 [9]
GaN Zinc blende a = 4.523 [9]
GaAs Zinc blende a = 5.648 [38]
CdS Zinc blende a = 5.818 [9]
AlN Wurtzite a = 3.111, c = 4.978, zN = 0.385 [40]

which depends on the potential vKS
eff,σ entering the Kohn–Sham equations (equation (1)). For

the evaluation of equation (6), the exchange–correlation part of vKS
eff,σ was taken from the

previous iteration of the self-consistent procedure. A Newton algorithm was used to solve the
nonlinear equation for xσ in each point of space, and we ensured always obtaining a positive real
value (which is unique). The calculations with the BJ exchange potential were done without
correlation or in combination with LDA correlation (PW92 [34]). For comparison purposes
we considered other functionals: LDA [34, 35] and the two GGA functionals PBE [3] and
EV93PW91 (EV93 [20] for exchange and PW91 [36] for correlation). The Brillouin zone
integrations were performed with 21 × 21 × 21 and 26 × 26 × 14 special point grids for
the cubic and non-cubic (wurtzite) structures, respectively. For Rmin

MT Kmax (the product of the
smallest of the atomic sphere radii RMT and the plane wave cutoff parameter Kmax), which
determines the quality of the basis set, the value of 8 was used for solids containing atoms only
from the first and second rows, 9 for solids containing third-row atoms, and 10 for solid Xe and
CdS. We note that the calculations using the BJ potential were more difficult to converge than
LDA or GGA calculations due to the use of the kinetic-energy density tσ .

2. Results and discussion

For the testing of the exchange–correlation potentials on band gaps, non-magnetic
semiconductors and insulators were selected. The structure and the experimental geometrical
parameters (see [9, 37–40] and references therein) given in table 1 were used for the
calculations. In this testing set the value of the experimentally measured band gaps
(see [9, 14, 41, 42] and references therein) range from 0.74 (for Ge) to 21.4 eV (for Ne).

It is a well-known fact (see [9] for a recent extensive test of functionals for band
gap calculations) that the standard LDA and PBE functionals lead to band gaps which are
significantly underestimated with respect to the experimental values. The results in table 2

3



J. Phys.: Condens. Matter 19 (2007) 196208 F Tran et al

Table 2. Fundamental band gaps (in eV) calculated at the experimental geometry (table 1). OEP
and experimental results taken from the literature are also indicated.

Solid LDA PBE EV93PW91 BJ BJLDA OEP Expt

Ne 11.42 11.59 11.25 13.14 13.84 14.15a, 14.76b 21.4 [14]
Ar 8.16 8.66 9.17 9.16 9.63 9.61a, 9.95b 14.2 [14]
Kr 6.76 7.25 7.94 7.56 7.98 7.87a, 8.02b 11.6 [14]
Xe 5.78 6.23 7.02 6.40 6.76 6.69a, 6.51b 9.8 [14]
C 4.11 4.15 4.31 4.31 4.42 5.12c, 5.06d 5.48 [9]
Si 0.47 0.57 0.92 0.71 0.84 1.93c, 1.44d 1.17 [9]
Ge 0.00 0.05 0.58 0.22 0.18 1.57c, 0.94e 0.74 [9]
LiF 8.94 9.19 9.98 9.92 10.17 14.3 [41]
LiCl 6.06 6.41 7.48 6.77 6.96 9.4 [41]
MgO 4.70 4.78 5.19 5.47 5.64 7.22 [9]
ScN −0.14 −0.02 0.20 0.12 0.17 1.70f 0.9 [42]
BN 4.38 4.50 4.85 4.83 4.98 6.22 [9]
MgS 3.29 3.57 4.51 3.92 4.11 5.4 [9]
SiC 1.35 1.39 1.55 1.70 1.84 2.42 [9]
ZnS 1.84 2.08 2.82 2.42 2.57 2.19–3.08g 3.66 [9]
GaN 1.67 1.66 1.94 2.10 2.21 2.55–2.88g 3.30 [9]
GaAs 0.30 0.53 1.13 0.75 0.75 1.78e 1.52 [9]
CdS 0.87 1.15 1.90 1.35 1.51 1.34–1.96g 2.55 [9]
AlN 4.18 4.16 4.44 4.74 4.87 6.13 [9]

a PP-PW OEP exchange only [14].
b PP-PW OEP exchange plus LDA correlation [14].
c LMTO-ASA OEP exchange only [11].
d PP-PW OEP exchange plus LDA correlation [12].
e PP-PW OEP exchange only [13].
f PP-PW OEP exchange plus LDA correlation [17].
g PP-PW OEP exchange plus LDA correlation [15].

show that LDA and PBE underestimate the band gap by the order of 0.6–1 eV for small band
gap solids such as Si, Ge, and ScN. For solids with a band gap situated between ∼1.5 (GaAs)
and ∼10 eV (LiCl), the band gap is found to be about 1–3.5 eV too small, and finally, for
very large band gap insulators (Ne, Ar, Kr, and LiF) the band gap is underestimated by more
than 4.5 eV. The PBE potential barely improves over LDA; the band gaps are increased by 0–
0.5 eV, while for GaN and AlN a very small decrease is observed. With respect to PBE, using
the EV93PW91 functional improves more clearly the band gap, which increases from 0.15 eV
(e.g., C) to about 1 eV (LiCl and MgS). Only for Ne does the EV93PW91 potential lead to a
band gap smaller than LDA and PBE results. Noteworthy are the EV93PW91 values of 0.92
and 0.58 eV for Si and Ge, respectively, which are relatively close to the experimental values
of 1.17 and 0.74 eV, while LDA describes Ge as semimetallic and PBE gives the very small
value of 0.05 eV. Nevertheless, this increase of the band gap with the EV93PW91 potential
is for most cases not big enough to bring the theoretical values into good agreement with the
experimental results. Concerning the BJ potential, first, we note that adding LDA correlation
to BJ exchange (BJLDA) increases the band gap by about 0.1–0.2 eV in most cases, while for
Ge there is a small decrease, no change for GaAs, and an increase of 0.7 eV for Ne. Overall
the performance of the BJLDA potential is similar to what has been seen with the EV93PW91
potential, i.e., a clear improvement over LDA and PBE potentials. The trend of BJLDA is to
give larger band gaps than EV93PW91 for large band gap systems (Xe and LiCl excepted), but
smaller values for small band gap systems. Note the clear improvement over EV93PW91 for
solid Ne (13.84 eV with BJLDA versus 11.25 eV with EV93PW91).
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Figure 1. Exchange–correlation potential in solid C (left panel) and Ge (right panel) plotted from
the vicinity of an atom at r = 0 to the mid-distance (r = 2.317 and 3.671 Å for C and Ge,
respectively) to the next atom in the [111] direction.

Table 2 also shows results from OEP calculations taken from literature [11–15, 17]. We
mention that other results for the fundamental band gap are available in [16], but the absolute
values are not available and for some systems it is not clear which experimental value was
chosen. Comparing our BJ and BJLDA band gaps with the OEP ones, we can see that the
tendency of the BJ potential is to lead to smaller values, which means in most cases less good
agreement with the experimental values. Nevertheless, in the case of the rare gases, ZnS, and
CdS, the BJ and BJLDA potentials compete with the pseudopotential plane-wave (PP-PW) OEP
method. The all-electron OEP calculations of Sharma et al [16] resulted in significantly larger
band gaps than the PP-PW OEP values, which means in some cases (e.g., GaAs, ZnS, and CdS)
a strong overestimation with respect to the experimental values, while for other cases (e.g., rare
gases) a better agreement with experiment. We also mention the early works of Li et al [43]
who obtained very good values for the band gap of solid rare gases and NaCl by applying the
OEP method to the self-interaction corrected functional of Perdew and Zunger [5].

Figure 1 shows the exchange–correlation potential vxc in solid C and Ge. From this figure
it can be seen that, compared to the LDA potential which depends only on the electron density,
the use of the derivatives of the electron density and/or the kinetic-energy density enhances
the oscillations reflecting the atomic shell structure. The magnitude of the oscillations in the
BJLDA potential are intermediate between the ones obtained with the PBE and EV93PW91
potentials. Good features of equation (2) are to reproduce well the shape of the exact exchange
potential (at least for atoms as shown in [30]) and to lead to a finite value (very roughly of the
order of −Z , where Z is the nuclear charge) at the position of the nuclei, which is the behaviour
of the exact potential (see [44] and references therein). This behaviour is also satisfied by LDA
but not by GGA due to the presence of the Laplacian of the electron density (∇2ρ) in vxc which
diverges at the nucleus.

In figure 2 we display the band structures of Si as obtained from PBE, EV93PW91, and
BJLDA potentials at the experimental geometry (table 1). The important observation is that
these band structures are not simply shifted with respect to each other. At the 	 point, PBE and
EV93PW91 lead to the same value of 2.56 eV for the band gap, while BJLDA increases the
band gap to 2.85 eV, which is closer to the experimental value of 3.34 eV [45]. The behaviour
is different at, for instance, the X point, where EV93PW91 and BJLDA lead, with respect to
PBE, to the increases of 0.36 and 0.16 eV for the band gap (X4v → X1c), respectively. In the
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Figure 2. Band structure of Si obtained from PBE (black
solid line), EV93PW91 (red dotted line), and BJLDA
(green solid line) calculations. The Fermi energy is at
zero.
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Figure 3. vBJLDA
xc − vLDA

xc (in a.u., left panel) and ρBJLDA − ρLDA (in electron Å
−3

, right panel)
differences plotted in a (001) plane of the conventional rock salt unit cell of LiCl. The atoms on the
top left and bottom right are Li atoms. The blue and red regions correspond to negative and positive
values, respectively.

case of EV93PW91 the transition X4v → X1c is 3.93 eV, which is slightly smaller than the
experimental value of about 4.2 eV [45].

We chose solid LiCl to illustrate the changes in the electron density induced by the BJLDA
exchange–correlation potential with respect to LDA (see figure 3). From figure 3 we can
see that, as expected, in the regions where the BJLDA potential is more negative (i.e., more
attractive) than the LDA one (blue regions in the left panel), the BJLDA electron density is
larger than the LDA density (red regions in the right panel). In the case of LiCl, which is an
ionic compound, the physical explanation of the opening of the band gap is simple. The more
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Figure 4. BJLDA electron density (in electron Å
−3

) of the states at the 	 point plotted in a (001)
plane of the conventional rock salt unit cell of LiCl. Left panel: at the top of the valence band. Right
panel: at the bottom of the conduction band.

negative BJLDA potential in the valence region of the Cl atom attracts the valence states of
LiCl, which are predominantly Cl p (see left panel of figure 4), and shifts them down, while
the conduction band states are shifted upwards since they have higher probability around the Li
atoms or in the interstitial region (see right panel of figure 4) where vBJLDA

xc − vLDA
xc is positive.

As a result, the electron density around the Cl atoms is larger with BJLDA potential than with
LDA, i.e., the ionic character of the compound is enhanced. More quantitatively, the increase
of the number of electrons inside the atomic sphere of radius RMT = 1.27 Å centred on a Cl
atom is about 0.07. Figure 3 also shows how the core electron density redistributes in a more
compact way around the nuclei when going from the LDA to the BJLDA potential, leading to
the nodal structure seen in the electron density difference.

3. Conclusions

We have presented the results of band gap calculations on semiconductors and insulators which
were obtained with different exchange–correlation potentials: LDA, PBE, EV93PW91, and
Becke–Johnson (equation (2)). Compared to the values obtained with the standard LDA and
PBE approximations, the results are clearly improved with the EV93PW91 and Becke–Johnson
potentials; the increase of the band gap often falls in the 0.5–1 eV range. The improvement
also holds if the comparison is done with the meta-GGA TPSS [38] functional (implemented
self-consistently with a non-multiplicative potential) which was shown to yield band gaps very
close to the PBE values [9]. Nevertheless, the results obtained with more advanced (but also
more computationally expensive) methods/functionals, e.g., GW [17–19] or the screened hybrid
functional HSE [9, 10] are clearly more impressive. The use of the EV93PW91 or Becke–
Johnson potential can also be useful in order to generate the orbitals and their energies for
non-self-consistent GW calculations, since for systems for which LDA and PBE do not lead to
a band gap (e.g., ScN), the use of their orbitals and energies leads to technical complications
(see [17] and references therein).
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